

THE STANDARD IN TIG WELDING

S T П

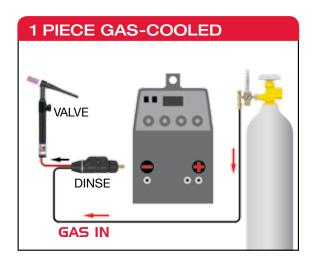
WWW.CKWORLDWIDE.com MADE IN THE U.S.A. Phone: 1 (800) 426-0877

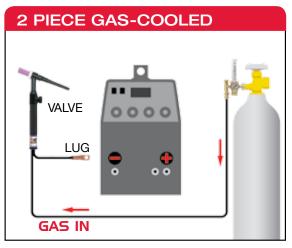
FORM 116 MAY 2017

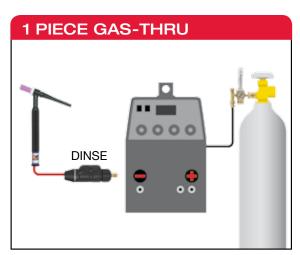
FIND US ON:

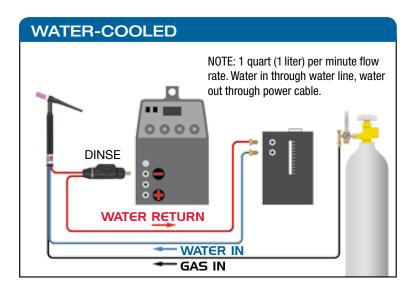
Product demonstrations, welding tips and more.

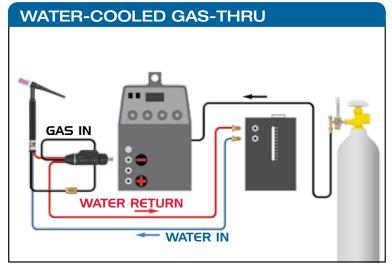
TWITTER: @CKWWInc

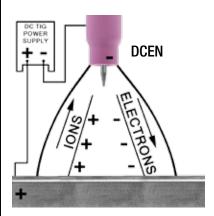

INSTAGRAM: @ckworldwide


TABLE OF CONTENTS

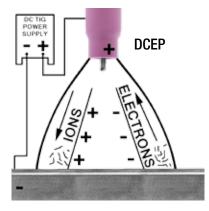

TIG Torch Connection Diagrams
Gas-Cooled Torches 3 Water-Cooled Torches 3
Characteristics of Current Types for TIG Welding
DC Straight Polarity
Guide for Shield Gas Flows, Current Settings, Cup Selection 6 Tungsten Electrode Tip Shapes and Current Ranges 6 Correct Torch and Rod Positioning 6 Tungsten Selection and Preparation
Tungsten Tip Preparation 7 Tungsten Extension and Grinding 7 Color Code for Tungsten Electrodes 7 Tungsten Characteristics and Penetration Profiles
Tungsten Electrode Characteristics 8 Tungsten Electrode Current Ranges 8 Weld Penetration Profiles 9 Typical Manual TIG Welding Parameters
Aluminum 10 Titanium 10 Magnesium 10 Deoxidized Copper 11 Stainless Steel 11 Low Alloy Steel 11 Typical Manual TIG Welding Parameters
Excessive Electrode Consumption 12 Erratic Arc 12 Inclusion of Tungsten or Oxides in Weld 12 Porosity in Weld Deposit 12 Cracking in Welds 12 Inadequate Shielding 12 Arc Blow 12 Short Parts Life 12


The information in this manual represents the best judgement of CK Worldwide, Inc. and is intended for use by experienced personnel. Never operate any equipment without carefully reading, understanding, and following all of the related safety rules and practices. CK Worldwide makes no claims, expressed or implied, as to the viability of this information for any application or use. The individual user is solely responsible for any and all uses of the information contained herein, since CK Worldwide has no means to confirm the correct use of, or control any of the variables to the use of any and all information herein.



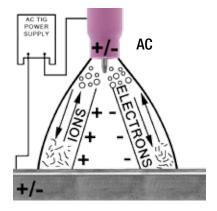


CHARACTERISTICS OF CURRENT TYPES FOR GAS TUNGSTEN ARC WELDING


When TIG welding, there are three choices of welding current. They are: Direct Current Straight Polarity (DCSP), Direct Current Reverse Polarity (DCRP), and Alternating Current with or without High Frequency stabilization (ACHF). Each of these has its applications, advantages, and disadvantages. A look at each type and its uses will help the operator select the best current type for the job. The type of current used will have a great effect on the penetration pattern as well as the bead configuration. The diagrams below show arc characteristics of each current polarity type.

TIG WELDING DCSP

Direct Current Straight Polarity produces deep penetration by concentrating heat in the joint area. No cleaning action occurs with this polarity.


CURRENT TYPE	DCSP		
ELECTRODE POLARITY	Electrode negative		
OXIDE CLEANING ACTION	No		
HEAT BALANCE IN THE ARC	70% of work end 30% at electrode end		
PENETRATION PROFILE	Deep narrow		
ELECTRODE CAPACITY	Excellent		

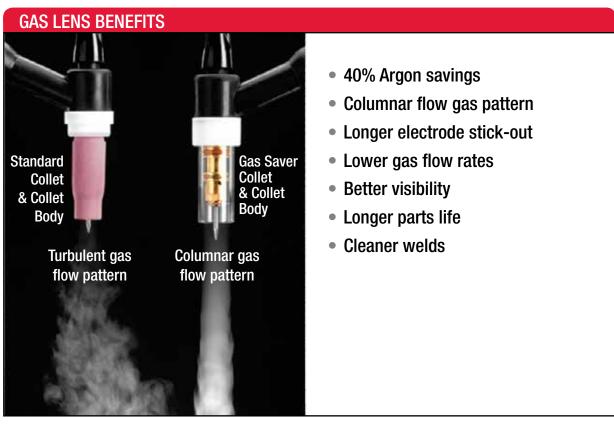
TIG WELDING DCRP

Direct Current Reverse Polarity produces the best cleaning action as the argon ions flowing towards the work strike with sufficient force to break up oxides on the surface.

CURRENT TYPE	DCRP
ELECTRODE POLARITY	Electrode positive
OXIDE CLEANING ACTION	Yes
HEAT BALANCE IN THE ARC	30% of work end 70% at electrode end
PENETRATION PROFILE	Shallow wide
ELECTRODE CAPACITY	Poor

TIG WELDING WITH ACHF

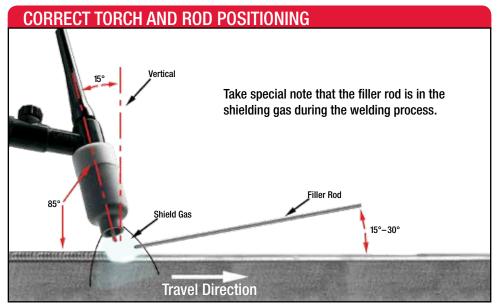
Alternating Current High Frequency combines the weld penetration on the negative half cycle with the cleaning action of the positive half cycle. High frequency re-establishes the arc which breaks each half cycle on transformer based machines.

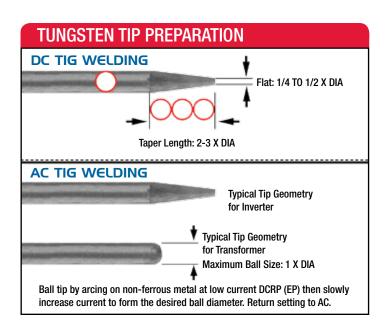

CURRENT TYPE	ACHF		
ELECTRODE POLARITY	Alternating		
OXIDE CLEANING ACTION	Yes (once every half cycle)		
HEAT BALANCE IN THE ARC	50% of work end 50% at electrode end		
PENETRATION PROFILE	Medium		
ELECTRODE CAPACITY	Good		

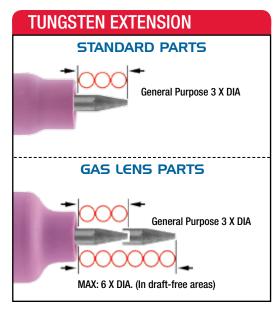
DCSP mainly used on: Stainless Steel, Mild Steel, Nickel, Copper, Titanium

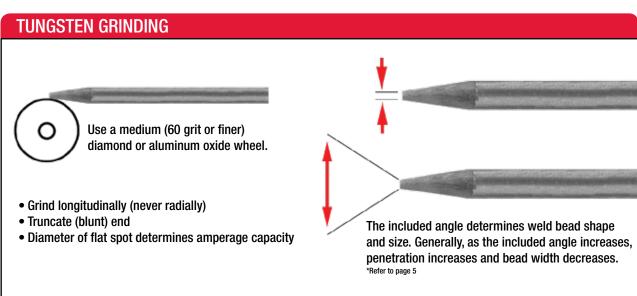
ACHF mainly used on: Aluminum, Magnesium

DCRP mainly used on: Thin Material




GUIDE FOR SHIELD GAS FLOWS, CURRENT SETTINGS & CUP SELECTION									
		WELDIN	G CURRENT	(AMPS) TUN	GSTEN TYPE	ARGON FLOW F	ERROUS METALS	ARGON FLOW	ALUMINUM
Electrode Diameter	Cup Size	AC Pure	AC Thoriated	DCSP Pure	DCSP Thoriated	Standard Body CFH (L/MN)	Gas Lens Body CFH (L/MN)	Standard Body CFH (L/MN)	Gas Lens Body CFH (L/MN)
.020" (0.5mm)	3, 4, or 5	5–15	5-20	5–15	5–20	5-8 (3-4)	5-8 (3-4)	5–8 (3–4)	5–8 (3–4)
.040" (1.0mm)	4 or 5	10-60	15-80	15–70	20-80	5-10 (3-5)	5-8 (3-4)	5-12 (3-6)	5-10 (3-5)
1/16" (1.6mm)	4, 5, or 6	50-100	70-150	70-130	80-150	7-12 (4-6)	5-10 (3-5)	8-15 (4-7)	7–12 (4–6)
3/32" (2.4mm)	6, 7, or 8	100-160	140-235	150-220	150-250	10-15 (5-7)	8-10 (4-5)	10-20 (5-10)	10–15 (5–7)
1/8" (3.2mm)	7, 8, or 10	150-210	220-325	220–330	240-350	10-18 (5-9)	8-12 (4-6)	12-25 (6-12)	10-20 (5-10)
5/32" (4.0mm)	8 or 10	200–275	300-425	375-475	400-500	15-25 (7-12)	10-15 (5-7)	15-30 (7-14)	12–25 (6–12)
3/16" (4.8mm)	8 or 10	250-350	400 – 525	475-800	475-800	20-35 (10-17)	12-25 (6-12)	25-40 (12-19)	15-30 (7-14)
1/4" (6.4mm)	10	325-700	500-700	750-1000	700-1000	25-50 (12-24)	20-35 (10-17)	30-55 (14-26)	25–45 (12–21)


For pure helium shielding gas, double flow rates shown. For argon-helium mixes with below 30% helium content, use figures shown. Always adjust gas flows to accommodate best shielding results.


TUNGSTEN ELECTRODE TIP SHAPES AND CURRENT RANGES									
ELECTRODE	DIAMETER	DIAMETER	R AT TIP		CURRENT	PULSED CURRENT			
Millimeters	Inches	Millimeters	Inches	INCLUDED ANGLE	RANGE	RANGE			
1.0mm	.040"	.125mm	.005"	12°	2–15 amps	2-25 amps			
1.0mm	.040"	.250mm	.010"	20°	5–30 amps	5–60 amps			
1.6mm	1/16"	.500mm	.020"	25°	8-50 amps	8-100 amps			
1.6mm	1/16"	.800mm	.030"	30°	10-70 amps	10-140 amps			
2.4mm	3/32"	.800mm	.030"	35°	12-90 amps	12–180 amps			
2.4mm	3/32"	1.100mm	.045"	45°	15-150 amps	15-250 amps			
3.2mm	1/8"	1.100mm	.045"	60°	20-200 amps	20-300 amps			
3.2mm	1/8"	1.500mm	.060"	90°	25-250 amps	25-350 amps			

COLOR (CODE FOR 1	TUNGSTEN ELECTRODES					
Desig	nation	Chemical Composition Impu	cal Composition Impurities ≤ 0.1%				
ISO 6848	AWS A5.12	OXIDE ADDITIVE	OXIDE ADDITIVE TUNGSTEN				
WT20	EWTh-2	ThO ₂ : 1.70-2.20%	2% THORIATED	Red			
WP	EWP	~~~~~	PURE	Green			
WL15	EWLa-1.5	LaO ₂ : 1.30-1.70%	1.5% LANTHANATED	Gold			
WC20	EWCe-2	CeO ₂ : 1.80-2.20%	2% CERIATED	Gray			
WL20	EWLa-2	La ₂ O ₃ : 1.80-2.20%	2% LANTHANATED	Blue			
WZ8	EWZr-8	ZrO ₂ : 0.70-0.90%	0.8% ZIRCONIATED	White			
LaYZr™	EWG	La ₂ O ₃ : 1.3-1.7%; Y ₂ O ₃ : 0.06-0.10%; ZrO ₂ : 0.6-1.0%	1.5% LANTHANATED 0.8% YTTRIATED 0.8% ZIRCONIATED	Chartreuse			

TUNGSTEN ELECTRO	DDE CHARACT	ERISTICS
Tungsten	Color Code	Characteristics
Pure	Green	Provides good arc stability for AC welding. Reasonably good resistance to contamination. Lowest current carrying capacity. Least expensive. Maintains a balled end. Used on transformer based machines only.
2% Ceriated	Gray	Similar performance to thoriated tungsten. Easy arc starting, good arc stability, long life. Possible replacement for thoriated.
2% Thoriated	Red	Easier arc starting. Higher current capacity. Greater arc stability. High resistance to weld pool contamination. Difficult to maintain balled end on AC.
1.5% Lanthanated	Gold	Similar performance to thoriated tungsten. Easy arc starting, good arc stability, long life, high current capacity. 1.5% possible replacement for thoriated. 2% possible replacement for Pure.
2% Lanthanated	Blue	Similar performance to thoriated tungsten. Easy arc starting, good arc stability, long life, high current capacity. 1.5% possible replacement for thoriated. 2% possible replacement for Pure.
.8% Zirconiated	White	Excellent for AC welding due to favorable retention of balled end, high resistance to contamination, and good arc starting. Preferred when tungsten contamination of weld is intolerable. Possible replacement for Pure.
LaYZr™	Chartreuse*	Best for use on automated or robotic applications. Runs cooler than 2% Thoriated with longer life. Low to medium amperage range.

^{*}Substitute for Purple (Same oxide blend).

TUNGSTEN ELECTRODE CURRENT RANGES TYPICAL CURRENT RANGE **Direct Current, DC Alternating Current, AC** DCEN 70% Penetration (50/50) Balanced Wave, AC Ceriated Zirconiated Ceriated Zirconiated Ceriated **Thoriated Thoriated** Pure **Thoriated** Gas Cup Tungsten Diameter in (Inside inches (mm) Diameter) Lanthanated Lanthanated LaYZr" Lanthanated LaYZr™ LaYZr™ LaYZr™ .040" (1.0mm) #6 (3/8") 15-80 amps 20-60 amps 15-80 amps 10-30 amps 20-60 amps 1/16" (1.6mm) #6 (3/8") 70-150 amps 50-100 amps 70-150 amps 30-80 amps 60-120 amps 3/32" (2.3mm) #8 (1/2") 150-250 amps 100-160 amps 140-235 amps 60-130 amps 100-180 amps 1/8" (3.2mm) #8 (1/2") 250-400 amps 150-200 amps 225-325 amps 100-180 amps 160-250 amps

All values are based on the use of Argon as a shielding gas. Other current values may be employed depending on the shielding gas, type of equipment, and application. DCEN = Direct Current Electrode Negative (Straight Polarity)

WELD PENETRATION	N PROFILE		
Gas Type	30° Angle .005" FLAT	60° Angle .010" FLAT	90° Angle .020" FLAT
100Ar 100% Argon			
75Ar-25He 75% Argon 25% Helium			
50Ar-50He 50% Argon 50% Helium			
25Ar-75He 25% Argon 75% Helium			
100He 100% Helium			
95Ar-5H 95% Argon 5% Hydrogen			

ALUN	JINUN	Л (ACHF)						
METAL	JOINT	TUNGSTEN	FILLER ROD	CUP	SHIEL	D GAS FLO	N	WELDING	TRAVEL
GAUGE	TYPE	SIZE	SIZE	SIZE	TYPE	CFH (L/MN)	PSI	AMPERES	SPEED
1/16"	BUTT	1/16"	1/16"	456	ARGON	15 (7)	20	60–80	12" (307.2mm)
(1.6mm) FI	FILLET	(1.6mm)	(1.6mm)	4, 5, 6				70–90	10" (256mm)
1/8"	BUTT	3/32" (2.4mm)	3/32" (2.4mm) 1/8" (3.2mm)	6, 7	ARGON	17 (8)	20	125–145	12" (307.2mm)
(3.2mm)	FILLET		3/32" (2.4mm) 1/16" (1.6mm)					140–160	10" (256mm)
3/16"	BUTT	1/8" (3.2mm)	1/8"	7.0	ARGON/	04 (40)	20	195–220	11" (258.6mm)
(4.8mm)	FILLET		(3.2mm)	7, 8	HELIUM	21 (10)	20	210–240	9" (230.4mm)
1/4" (6.4mm)	BUTT	3/16"	1/8" (3.2mm)	0.10	ARGON/	25 (12)	2) 20	260-300	10" (256mm)
	FILLET	(4.8mm)		8, 10	HELIUM			280-320	8" (204.8mm)

ALUMINUM

The use of TIG welding for aluminum has many advantages for both manual and automatic processes. Filler metal can be either wire or rod and should be compatible with the base alloy. Filler metal must be dry, free of oxides, grease, or other foreign matter. If filler metal becomes damp, heat for 2 hours at 250°F (121°C) before using. Although ACHF is recommended, DCRP has been successful up to 3/32" (2.4mm), DCSP with helium shield gas is successful in mechanized applications.

TITA	NIUM	(DCSP)								
METAL	JOINT	TUNGSTEN	FILLER ROD	CUP	SHIEL	D GAS FLO	N	WELDING	TRAVEL	
GAUGE	TYPE	SIZE	SIZE	SIZE	ТҮРЕ	CFH (L/MN)	PSI	AMPERES	SPEED	
1/16"	BUTT	1/16"	NONE	456	ARGON	15 (7)	20	90–110	10" (256mm)	
(1.6mm) FILLE	FILLET	(1.6mm)	NUNE	4, 5, 6	ARGUN		20	110–150	8" (204.8mm)	
1/8"	BUTT	3/32"	1/16"	5, 6, 7	ARGON	15 (7)	20	190–220	9" (230.4mm)	
(3.2mm)	FILLET	(2.4mm)	(1.6mm)				20	210–250	7" (179.2mm)	
3/16"	BUTT	3/32" (2.4mm)	3/32"	1/8"	6.7.0	ARGON	20 (10)	20	220–250	8" (204.8mm)
(4.8mm)	FILLET		(3.2mm)	6, 7, 8	ANGUN	20 (10)	20	240–280	7" (179.2mm)	
1/4"	BUTT	1/8" (3.2mm)	1/8" (3.2mm)	0 10	ARGON	20 (15)	20	275–310	8" (204.8mm)	
(6.4mm)	FILLET			8, 10	ANGUN	30 (15)	20	290–340	7" (179.2mm)	

TITANIUM

Small amounts of impurities, particularly oxygen and nitrogen, cause embrittlement of molten or hot titanium when above 500°F (260°C). The molten weld metal in the heat-affected zones must be shielded by a protective blanket of inert gas. Titanium requires a strong, positive pressure of argon or helium as a backup on the root side of the weld, as well as long, trailing, protective tail of argon gas to protect the metal while cooling. Purge chambers and trailing shields are available from CK Worldwide to assist in providing quality results.

MAG	MAGNESIUM (ACHF)										
	JOINT	TUNGSTEN	FILLER ROD SIZE	CUP	SHIELI	SHIELD GAS FLOW			TRAVEL		
METAL GAUGE	TYPE	SIZE		SIZE	ТҮРЕ	CFH (L/MN)	PSI	WELDING AMPERES	SPEED		
1/16"	BUTT	1/16"	3/32" (2.4mm)	5, 6	ARGON	13 (5)	15	60	20"		
(1.6mm)	(1.6mm) FILLET	(1.6mm)	1/8" (3.2mm)	3, 0			10	60	(512mm)		
1/8"	BUTT	3/32" (2.4mm)	1/8" (3.2mm) 5/32" (4.0mm)	7.0	ARGON	19 (9)	15	115	17" (435.2mm)		
(3.2mm)	FILLET			7, 8				115			
1/4"	BUTT	3/16" (4.8mm)	5/32" (4.0mm)		ARGON	25 (12)	15	100–130	22" (563.2mm)		
(6.4mm)	FILLET			8				110–135	20" (512mm)		
1/2"	BUTT	1/4"	0/40 /4.0)	10	ARGON	35 (17)	15	260	10"		
(12.8mm) _I	FILLET	(6.4mm)	3/16" (4.8mm)	10	ANUUN				(256mm)		

MAGNESIUM

Magnesium was one of the first metals to be welded commercially by TIG. Magnesium alloys are in three groups, they are: (1) aluminum-zinc-magnesium, (2) aluminum-magnesium, and (3) maganese-magnesium. Since magnesium absorbs a number of harmful ingredients and oxiodize rapidly when subjected to welding heat, TIG welding in an inert gas atmosphere is distinctly advantageous. The welding of magnesium is similar, in many respects, to the welding of aluminum. Magnesium requires a positive pressure of argon as a backup on the root side of the weld.

DEOXIDIZED COPPER (DCSP)									
METAL	JOINT	TUNGSTEN	FILLED DOD	CUP	SHIELD GAS FLOW			WELDING	TRAVEL
GAUGE	TYPE	SIZE			TYPE	CFH (L/MN)	PSI	AMPERES	SPEED
1/16"	BUTT	1/16" (1.6mm)	1/16" (1.6mm)	4, 5, 6	ARGON	18 (9)	15	110–140	12" (307.2mm)
(1.6mm)	FILLET							130–150	10" (256mm)
1/8" (3.2mm)	BUTT	3/32" (2.4mm)	3/32" (2.4mm)	4, 5, 6	ARGON	18 (9)	15	175–225	11" (258.6mm)
	FILLET							200–250	9" (230.4mm)
3/16" (4.8mm)	BUTT	1/8" (3.2mm)	1/8" (3.2mm)	8, 10	HELIUM	36 (17.5)	15	190–225	10" (256mm)
	FILLET							205–250	8" (204.8mm)
1/4" (6.4mm)	BUTT (2) 3/16" (4.8mm)	3/16"	1/8"	0.10	1151 11184	36	4-	225–260	9" (230.4mm)
		(3.2mm)	8, 10	HELIUM	(17.5)	15	250–280	7" (179.2mm)	

DEOXIDIZED COPPER

Where extensive welding is to be done, the use of deoxidized (oxygen-free) copper is preferable over electrolytic tough pitch copper. Although TIG welding has been used occasionally to weld zinc-bearing copper alloys, such as brass and commercial bronzes, it is not recommended because the shielding gas does not suppress the vaporization of zinc. For the same reason zinc bearing filler rods should not be used. There is some preference of helium for the inert atmosphere in welding thickness above 1/8" (3.2mm) because of the improved weld metal fluidity. Preheating recommendations should be followed.

STAINLESS STEEL (DCSP)									
METAL	JOINT TYPE	TUNGSTEN SIZE	FILLER ROD SIZE	CUP SIZE	SHIELD GAS FLOW			WELDING	TRAVEL
GAUGE					ТҮРЕ	CFH (L/MN)	PSI	AMPERES	SPEED
1/16"	BUTT	1/16"	1/16"	4.5.0	4 DOOM	44 (5.5)	00	80–100	12" (307.2mm)
(1.6mm) FILLET	(1.6mm)	(1.6mm)	4, 5, 6	ARGON	11 (5.5)	20	90–100	10" (256mm)	
1/8" (3.2mm)	BUTT	1/16" (1.6mm)	3/32" (2.4mm)	4, 5, 6	ARGON	11 (5.5)	20	120–140	12" (307.2mm)
	FILLET							130–150	10" (256mm)
3/16"	BUTT	3/32" (2.4mm)	1/8" (3.2mm) 5, 6, 7	F C 7	ARGON	13 (6)	20	200–250	12" (307.2mm)
(4.8mm)	/ FILLET 3/32 (2.1	3/32" (2.4mm) 1/8" (3.2mm)		5, 6, 7				225–275	10" (256mm)
1/4" (6.4mm)	BUTT 1/8"	1/8"	3/16" (4.8mm)	8, 10	ARGON	13 (6)	20	275–350	10" (256mm)
	FILLET	(3.2mm)						300–375	8" (204.8mm)

STAINLESS STEEL

In TIG welding of stainless steel, welding rods having the AWS-ASTM prefixes of E or ER can be used as filler rods. However, only bare uncoated rods should be used. Light gauge metals less then 1/16" (1.6mm) thick should always be welded with DCSP using argon gas. Follow the normal precautions for welding stainless such as: Clean surfaces; dry electrodes; use only stainless steel tools and brushes, keep stainless from coming in contact with other metals.

LOW ALLOY STEEL (DCSP)									
METAL GAUGE	JOINT TYPE	TUNGSTEN SIZE	FILLER ROD SIZE	CUP SIZE	SHIELD GAS FLOW			WELDING	TRAVEL
					TYPE	CFH (L/MN)	PSI	AMPERES	SPEED
1/16"	BUTT	1/16" (1.6mm)	1/16" (1.6mm)	4, 5, 6	ARGON	15 (7)	20	95-135	15" (384mm)
(1.6mm)	FILLET							95-135	15" (384mm)
1/8" (3.2mm)	BUTT	1/16" (1.6mm) 3/32 (2.4mm)	3/32" (2.4mm)	4, 5, 6	ARGON	15 (7)	20	145-205	11" (258.6mm)
	FILLET							145-205	11" (258.6mm)
3/16"	BUTT	3/32" (2.4mm)	1/8" (3.2mm)	7, 8	ARGON	16 (6.5)	20	210-260	10" (256mm)
(4.8mm)	FILLET							210-260	10" (256mm)
1/4" (6.4mm)	BUTT	1/8" (3.2mm)	5/32" (4.0mm)	8, 10	ARGON	18 (8.5)	20	240-300	10" (256mm)
	FILLET (2)							240-300	10" (256mm)

LOW ALLOY STEEL

Mild and low carbon steels with less then 0.30% carbon and less than 1" (2.5cm) thick, generally do not require preheat. An exception to this allowance is welding on highly restrained joints. These joints should be preheated 50 to 100°F (10 to 38°C) to minimize shrinkage cracks in the base metal. Low alloy steels such as the chromium-molybdenum steels will have hard heat affected zones after welding, if the preheat temperature is too low. This is caused by rapid cooling of the base material and the formation of martensitic grain structures. A 200 to 400°F (93 to 204°C) preheat temperature will slow the cooling rate and prevent the martensitic structure.

TROUBLESHOOTING GUIDE

	CESHOOTING GOIDE						
PROBLEM	CAUSE	SOLUTION					
	Inadequate gas flow	Increase gas flow					
	Improper size electrode for current required	Use larger electrode					
Excessive	Operating of reverse polarity	Use larger electrode or change polarity					
Electrode	Electrode contamination	Remove contaminated portion, then prepare again					
Consumption	Excessive heating inside torch	Replace collect, try wedge collet or reverse collet					
	Electrode oxidizing during cooling	Increase gas post flow time to 1 sec. per 10 amps					
	Shield gas incorrect	Change to proper gas (no oxygen or Co2)					
	Incorrect voltage (arc too long)	Maintain short arc length					
	Current too low for electrode size	Use smaller electrode or increase current					
	Electrode contaminated	Remove contaminated portion, then prepare again					
Erratic Arc	Joint too narrow	Open joint groove					
	Contaminated shield gas, dark stains on the electrode or weld bead indicate contamination	Most common cause is moisture or aspirated air in gas stream. Use welding grade gas only. Find the source of the contamination and eliminate it promptly.					
	Base metal is oxidized, dirty or oily	Use appropriate chemical cleaners, wire brush or abrasives prior to welding.					
	Poor scratch starting technique	Many codes do not allow scratch starts. Use copper strike plate. Use high-frequency arc starter.					
	Excessive current for tungsten size used	Reduce current or use larger electrode					
Inclusion	Accidental contact of electrode with puddle	Maintain proper arc length					
of Tungsten	Accidental contact of electrode to filler rod	Maintain a distance between electrode and filler metal					
or Oxides	Using excessive electrode extension	Reduce electrode extension to recommended limits					
in Weld	Inadequate shielding or excessive drafts	Increase gas flow, shield arc from wind, or use gas lens					
	Wrong gas	Do not use Ar-O2 or Ar-Co2 GMA (MIG) gases for TIG welding					
	Heavy surface oxides not being removed	Use ACHF, adjust balance control for maximum cleaning, or wire brush and clean the weld joint prior to welding.					
	Entrapped impurities, hydrogen, air, nitrogen, water vapor	Do not weld on wet material. Remove condensation from line					
	Defective gas hose or loose connection	Check hoses and connections for leaks					
	Filler material is damp (particularly aluminum)	Dry filler metal in oven prior to welding					
Porosity in Weld Deposit	Filler material is oily or dusty	Replace filler metal					
	Alloy impurities in the base metal such as sulphur, phosphorus, lead and zinc	Change to a different alloy composition which is weldable. These impurities can cause a tendency to crack when hot.					
	Excessive travel speed with rapid freezing of weld trapping gases before they escape	Lower the travel speed					
	Contaminated gas shield	Replace the shielding gas					
	Hot cracking in heavy section or with metals which are hot shorts	Preheat, increase weld bead cross-section size, change weld bead contour.					
Cracking	Crater cracks due to improperly breaking the arc or terminating the weld at the joint edge	Reverse direction and weld back into previous weld at edge. Use remote or foot control to manually down slope current.					
in Welds	Post weld cold cracking, due to excessive joint restraint, rapid cooling, or hydrogen embrittlement	Preheat prior to welding, use pure to non-contaminated gas. Increase the bead size. Prevent craters or notches. Change the weld joint design.					
	Centerline cracks in single pass welds	Increase bead size. Decrease root opening, use preheat, prevent craters.					
	Underbead cracking from brittle microstructure	Eliminate sources of hydrogen, joint restraint, and use preheat.					
	Gas flow blockage or leak in hoses or torch	Locate and eliminate blockage or leak.					
	Excessive travel speed exposes molten weld to atmospheric	Use slower travel speed or carefully increase the flow rate to a safe level below creating					
Inadequate	contamination Wind or drafts	excessive turbulence. Use trailing shield cup.					
Shielding	Wind or drafts Excessive electrode stickout	Set up screens around the weld area Reduce electrode stickout. Use a larger size cup.					
	Excessive electrode suckout Excessive turbulence in gas stream	Change to gas saver parts or gas lens parts.					
	Induced magnetic field from DC weld current	Change to GAS saver parts or gas lens parts. Change to ACHF current. Rearrange the split ground connection.					
Arc Blow	Arc is unstable due to magnetic influences	Reduce weld current and use arc length as short as possible.					
	Short water cooled leads life	Verify coolant flow direction, return flow must be on the power cable lead.					
	Cup shattering or breaking in use	Change cup size or type, change tungsten position, refer to CK Worldwide technical specifications available at www.CKWorldwide.com					
Short	Short collet life	Ordinary style is split and twists or jams, change to wedge style.					
Parts Life	Short torch head life	Do not operate beyond rated capacity, use water cooled model, do not bend rigid torches.					
	Gas hoses ballooning, bursting or blowing off while hot	Incorrect flowmeter, TIG flowmeters operate at 35 psi with low flows. MIG flowmeters operate with high flows at 65 psi or more.					

TRADEMARK NOTICES:
Gas Saver, Safe-Loc, Flex-Loc, Super-Flex,
Trim-Line, Max-Flo, Fail-Safe, Steady-Grip and LayZr are
registered trademarks of CK Worldwide, Inc.

Phone: 1.800.426.0877 Fax: 1.800.327.5038 CK Worldwide, Inc., PO Box 1636, Auburn, WA 98071